The paper is out! Read it now

About RVMT

The RNA Viruses in Metatranscriptomes (RVMT) database is a collection of viruses and associated data spanning. This database is designed to be used by researchers and researchers interested in the study of RNA viruses.

Introduction

RNA viruses are among the most diverse biological entities in the world. However, due to this massive variety, it is not possible to identify and study each RNA virus individually with laboratory experimentation. Advances in sequencing technology have allowed us to capture the genomes of these viruses which can tell us about their evolution and structure. By processing vast amounts of sequencing data available via the Joint Genome Institutes's Integrated Microbial Genomes (IMG) system, we have been able to create a database of RNA viruses. RVMT represents the result of this research.

User Guide

For full documentation of the data, please see the user guide.

Citation

If you want to cite this dataset, please use the following citation:

Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D; RNA Virus Discovery Consortium, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell. 2022 Sep 25:S0092-8674(22)01118-7. doi: 10.1016/j.cell.2022.08.023. Epub ahead of print. PMID: 36174579.

Frequently Asked Questions

Where can I find the code for the project?

The code for the discovery pipeline, analysis is available on GitHub. The website's source code is also available. All code for the project is open source and under the MIT license.

Are there restrictions on using the data?

No. We just ask that you cite the paper describing this dataset if you use it in your own work and/or publication.

What's the data format?

Several different data formats are used in the database:

For each taxon, there is also a zip file containing all the files for that taxon. For full information, please see the user guide.

How do I extract the sequences from a .fasta.gzip file?

Use the command gunzip <file> in the terminal. If you aren't familiar with the command line, you can uncompress it using a program like 7-Zip.

Acknowledgements

The RVMT team would like to thank the following people for their contributions:

  • Adrienne B. Narrowe
  • Alexander J. Probst
  • Alexander Sczyrba
  • Annegret Kohler
  • Armand Séguin
  • Ashley Shade
  • Barbara J. Campbell
  • Björn D. Lindahl
  • Brandi Kiel Reese
  • Breanna M. Roque
  • Chris DeRito
  • Colin Averill
  • Daniel Cullen
  • David A. C. Beck
  • David A. Walsh
  • David M. Ward
  • Dongying Wu
  • Emiley Eloe-Fadrosh
  • Eoin L. Brodie
  • Erica B. Young
  • Erik A. Lilleskov
  • Federico J. Castillo
  • Francis M. Martin
  • Gary R. LeCleir
  • Graeme T. Attwood
  • Hinsby Cadillo-Quiroz
  • Holly M. Simon
  • Ian Hewson
  • Igor V. Grigoriev
  • James M. Tiedje
  • Janet K. Jansson
  • Janey Lee
  • Jean S. VanderGheynst
  • Jeff Dangl
  • Jeff S. Bowman
  • Jeffrey L. Blanchard
  • Jennifer L. Bowen
  • Jiangbing Xu
  • Jillian F. Banfield
  • Jody W Deming
  • Joel E. Kostka
  • John M. Gladden
  • Josephine Z Rapp
  • Joshua Sharpe
  • Katherine D. McMahon
  • Kathleen K. Treseder
  • Kay D. Bidle
  • Kelly C. Wrighton
  • Kimberlee Thamatrakoln
  • Klaus Nusslein
  • Laura K. Meredith
  • Lucia Ramirez
  • Marc Buee
  • Marcel Huntemann
  • Marina G. Kalyuzhnaya
  • Mark P Waldrop
  • Matthew B Sullivan
  • Matthew O. Schrenk
  • Matthias Hess
  • Michael A. Vega
  • Michelle A. O’Malley
  • Monica Medina
  • Naomi E. Gilbert
  • Nathalie Delherbe
  • Olivia U. Mason
  • Paul Dijkstra
  • Peter F. Chuckran
  • Petr Baldrian
  • Philippe Constant
  • Ramunas Stepanauskas
  • Rebecca A. Daly
  • Regina Lamendella
  • Robert J Gruninger
  • Robert M. McKay
  • Samuel Hylander
  • Sarah L. Lebeis
  • Sarah P Esser
  • Silvia G. Acinas
  • Steven S. Wilhelm
  • Steven W. Singer
  • Susannah S. Tringe
  • Tanja Woyke
  • TBK Reddy
  • Terrence H. Bell
  • Thomas Mock
  • Tim McAllister
  • Vera Thiel
  • Vincent J. Denef
  • Wen-Tso Liu
  • Willm Martens-Habbena
  • Xiao-Jun Allen Liu
  • Zachary S. Cooper
  • Zhong Wang